
A new and robust hysteresis modeling based on simple equations 
 

João Pedro Assumpção Bastos1, Kleyton Hoffmann1,2, Jean Vianei Leite1, and Nelson Sadowski1 
1GRUCAD/EEL/CTC, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil 
2Universidade do Oeste de Santa Catarina, Department of Electrical Engineering, Joaçaba, SC, Brazil 

 
In this paper we propose a new approach for modeling scalar hysteresis based on simple equations. The proposed technique is based 

on simple equations and its treatment is more direct than the well-known Preisach and Jiles-Atherton models. As main basis, the shape 
of the external hysteresis curves is strongly considered, allowing a correct behavior of magnetic induction evolution inside the hysteresis 
cycle. 
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I. INTRODUCTION 

E ARE using, with good results, the classical and well 
known Jiles-Atherton hysteresis model for several years 

[1,2,3]. In collaboration with another research group, Preisach 
model have been also employed on our simulations [4]. In spite 
of their efficiency, such models are complex and somewhat 
difficult to implement. Even the full understanding and 
variation sensibility related to their parameters is not trivial. The 
main purpose of this work is to find a new hysteresis approach 
based on simple equations. For doing so, as for any related 
method, it is necessary to have some experimental data from the 
material to be modeled. In the proposed methodology, only an 
external hysteresis loop, i.e. the loop reaching the saturation, is 
necessary. Once such curves are available, we build our model. 
It is important to note that inner loops as well as the magnetic 
transitory evolution can be represented using only the external 
loop information. 

II. THE EXTERNAL HYSTERESIS CURVE: TWO POSSIBILITIES 

With the B(H) curve obtained by experimental means, it is 
possible to define the ascendant and descendent external curves 
by different approaches. Let us consider the Fig. 1. 

 
Fig 1 – The hysteresis curve: experimental data and curve of the proposed 
model. 

 
The observation of the experimental data indicates that the B(H) 
curve can be represented by different methods. Firstly, it is 
possible to remark that this curve possesses, with reasonable 
accuracy, the shape of a dislocated exponential curve. For 
instance, considering the experimental data of Fig. 1, the B(H) 
form of Fig.2(a) is approached by the equation 
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Fig. 2: (a) B(H) curve simulated by an exponential curve. (b) B(H) curve 
simulated by a sum of two Langevin curves. 

 
The agreement is quite good. A second method has its basis on 
a dislocated Langevin curve. For the same Fig.1, the Langevin 
approach is shown in Fig. 2(b); it is given by the formula 
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. As above, the agreement is 

satisfactory. The use of a Langevin function implies on finding 
the parameters sM  and la . 

III. THE B EVOLUTION INSIDE DE B (H) CURVE 

The establishment of the external curves, shown above, is the 
first step for the most challenging task of this work, which is 
the B evolution inside the cycle. Notice that, if the above 
techniques fail, it is possible to use a set of B(H) points 
describing, in a better way, the experimental external curve. 
Now let us analyze the evolution of the magnetic state for inner 
loops. 

 
Fig. 3: Evolution of B as function of H with B(H) curve angles. 

 
We consider that a small increment of H must be applied, when 
the magnetic state is at point a in Fig. 3. It is necessary to find 
the corresponding angle inside the cycle. Analyzing  Fig.3 it can 
be observed that, at the point aH  (in the descendent branch), 
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angle a  is related with the angle i  ( aH  in the ascendant 

branch) and normally smaller than it. Therefore, we choose a 
factor ap  as aa ip  . For instance, ap  can be choose 

empirically as 0.3. At the other extremity, at bH , the same 

phenomenon occurs but the angle b  is very close to i  (the 

B(H) curve angle). In this case, bp  is defined at the point bH  

and, for instance, bp  can be here 0.8. In other words, the 

evolution of B, as function of H, goes from a “small” angle at 

aH  to a situation when the internal curve becomes “tangent” to 

the ascendant B(H) hysteresis curve. From this point on, the H 
and B increasing follows the external curve. Obviously, when 
we have the descendent H, similar situation occurs. In Fig. 4a 
the B behavior is shown as described above. 

     
Fig. 4: (a) B evolution with 0.3ap   and 0.8bp  . (b) the evolution of B 

considering the angles and normalized distances. 

 
There is now a crucial point - even though quite simple - on the 
proposed method:  p  varies from ap  to bp . For the sake of 

explanation, an ascendant internal curve is considered. In 
Fig.4b a generic point c inside the cycle is located between the 
two points a and b. 

 
Fig. 5: (a) 0.2ap   with different bp .       (b) 0.9bp   with different ap . 

 
Using the external curves, sdist  and idist  can be easily 

calculated. We proceed with the calculation of the normalized 

id  and sd  as  /i i i sd dist dist dist   and 

 /s i ssd dist dist dist  . At the point a , 1id   and 0sd  ; at 

the point b , 0id   and 1sd  . With such definitions, it is 

possible establish the variation of p  going from ap  at 1id   

to bp  at the point b . It can be easily described by the linear 

function  b a i ap p p d p   (other functions could be 

considered). As an example, we show in Fig. 5 how, from a 
generic point a , B(H) behaviors when ap  and bp varies 

accordingly to the figure captions.  
Another result is presented on Fig. 6. It shows internal loops 

when starting at the point 0H   and 0B . H varies 

periodically, increasing slowly its magnitude.  

 
Fig. 6: B(H) cycles with increasing values of H with 0.3ap   and 0.8bp  . 

 
A comparison with experimental results is presented in the Fig. 
7 when H varies in a non ‘symmetric’ way inside the cycle. In 
this case, the agreement between results from our method and 
experimental ones is quite good. For this result, we choose 

0.3ap   and 0.8bp  . 

 
Fig. 7: comparison between results obtained with proposed method and 
experimental ones. 

 
The main point here is the fact that, just choosing these two 

parameters ( ap , bp ), the B(H) behavior can be fairly described, 

once just one external B(H) curve is available. 

IV. CONCLUSIONS 

We presented in this paper a new method for modeling the 
hysteretic behavior of ferromagnetic material. It is based on 
simple procedures and equations. As shown, it can describe 
with good accuracy B(H) curves and it is related to few 
parameters. They have easy understanding and therefore are 
simple to handle. At this moment, we are working on improving 
the method and on the appropriate representation of minor 
loops. It will be described on the full paper. 
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